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Abstract. The quest for a simulation scheme that com-
bines the preciseness of the PDEVS formalism with the
ease of use of standard simulation environments has
lead to the definition of NSA-DEVS, which has meanwhile
been shown to provide a useful basis for real-world appli-
cations. A set of modeling and simulation tools for NSA-
DEVS is freely available that usesMatlab as programming
language and the graphical editor of Simulink for the con-
struction of complex models from simple atomic compo-
nents.
To demonstrate that these tools are ready for gen-
eral discrete-event based applications, the implementa-
tion of a textbook example is presented in some detail.
It is shown that components that are necessary for a
transaction-oriented style can bemodeled easily, leading
to a comprehensiblemodel with a solidmathematical ba-
sis.

Introduction

For modeling and simulation using the discrete event
approach, practitioners can choose between a lot of
commercial simulation environments, which provide
users with a wide range of components and helpful tools
[1]. However, the behaviour of complex models can
sometimes be different than expected, especially be-
cause the documentation often does not provide all nec-
essary details. In such situations users generally build
a toolset of workarounds to make things work. But this
often leads to conceptual problems and does not deepen
the understanding of the precise behaviour of a model
[2].

On the other hand, one could start instead with a
precise description of the model and its components, us-
ing the well-established PDEVS formalism [3]. There

are even a few free tools that provide a user-extensible
set of DEVS-based components and a graphical user
interface for combining components to build complex
models [4]. But Preyser et al. have shown in [5] that
the way, how PDEVS uses transitory states (i. e. states
with lifetime 0), makes it hard to define some simple
reusable components, especially when they show Mealy
behaviour. Therefore they proposed a revised version of
the PDEVS formalism [6] that allows for the direct de-
scription of Mealy components.

However, this formalism still has problems with
chains of concurrent events [7]. Therefore it has
been extended to NSA-DEVS (Non-Standard Analysis
DEVS), which solves these difficulties by formally in-
troducing infinitesimal delays. This idea has been ana-
lyzed thoroughly in [8, 9] and used to implement a large
real-world example [10]. A corresponding simulation
environment has been built, which contains graphical
tools and a growing library of components. It is based
on Matlab and the graphical editor of Simulink and is
freely available from [11].

Since this article is primarily an invitation to use
these new tools for modeling and simulation in discrete-
event based studies, it concentrates on practical aspects,
not on the underlying mathematical formalism. After a
short definition of NSA-DEVS and a recapitulation of
previous results, the structure of the tools and the basic
workflow for concrete studies will be presented in some
detail. A basic example from Law’s textbook [12] will
illustrate how to implement and apply components for
standard entity-based applications.

1 Definition of NSA-DEVS
Like the PDEVS specification, the NSA-DEVS formal-
ism describes two types of models: atomic models,
which are the basic components, and coupled models,
which combine atomic and coupled models in a hierar-
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chical structure.
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Figure 1: Dynamics of an atomic component.

An atomic model (cf. Fig. 1) is given by a set X of
input ports, each with a name, a similar set Y of out-
put ports, a set S of internal states and an input delay
time τ . Each state s has a lifetime, given by the time
advance function ta(s). The behaviour is given by the
output function λ , which defines output values y, and
the transition function δ , which computes the next in-
ternal state. Both functions depend on three values: the
current state s, the elapsed time e since the last transi-
tion and the input values x. When an external event, i.
e. a set x of input values, occurs at time t, λ is called
at time t + τ , followed by an immediate call of δ . An
internal event, i.e. a state change after a waiting time
ta(s), leads to a direct (undelayed) call of λ and δ .

The essential modification of NSA-DEVS is the in-
troduction of the input delay together with extended
time values: Introducing an infinitesimal value ε > 0,
times are defined as values of the form a+bε . The de-
lay time is usually defined as τ = ε and only changed
at rare occasions to guarantee a given order of events.
Furthermore, the lifetime of states can never be 0, but
an “immediate” (transitory) state change needs at least
an infinitesimal time τD.

A coupled model is basically a set of several lists
that describe the submodels used (atomic or coupled),
the input and output ports of the coupled model and all
connections between the submodels and from or to the
ports of the coupled model. Inputs of a coupled model
are immediate, i. e. they have no additional input delays.

2 Current Status of NSA-DEVS
The fundamental insight of [5] was that while the basic
PDEVS formalism is sufficient to model any discrete-
event based system, this is generally not possible with

every reusable component. After the definition of NSA-
DEVS one had therefore to show that it was up to this
task.

The first step was the definition of a corresponding
abstract simulator [8]. According to the DEVS philoso-
phy, the simulator is actually part of the definition of
the formalism. It adds a semantic layer to the static
definition of models by defining their exact behaviour.
In a next step [9], a set of standard examples was de-
fined formally and implemented using simple reusable
atomic components. A special point of interest was,
how one can define the infinitesimal parameters intro-
duced by NSA-DEVS in a simple and systematic way.
This was studied further with a large real-world exam-
ple in [10] consisting of 391 atomic and 88 coupled
models in 5 hierarchical levels. It contained 391 input
delay times τ and 12 additional delays τD for transi-
tory states. Its construction has been simplified by the
introduction of a graphical model builder, which uses
Simulink for the definition of coupled models.

In the course of these investigations, a basic set of
atomic models has been defined and implemented:

• sources (constant, several generators),

• math operations (add, gain, multiply, divide, com-
pare),

• logic operations and flipflops based on IEEE 1164,

• routing components (combine, distribute),

• a QSS-based integrator,

• a sink (toworkspace) for logging simulation re-
sults,

• common logistics components (queue, server,
batch, unbatch, terminator),

• statistical computations (getmax, utilization).

For all atomic models, corresponding NSA-DEVS
blocks are provided for the Simulink editor and assem-
bled in libraries. They make it possible to construct
coupled models using Simulink’s graphical capabilities
for positioning and connecting blocks and ports. In ad-
dition, block parameters can be set, among them the
values for the input delay τ and, where necessary, the
transition delay τD.

All delay values are predefined and usually set to the
default value τde f = ε . An exception are components
that emit trains of output values with infinitesimal time
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distances, such as queue and combine atomics. They
need larger values for τD, which are predefined in the
library to τD = 2ε . This often works, but has to be en-
larged in special cases. If a special ordering is requested
for loops that contain several sequences of components,
one has to increase a few input delays to slow down
some paths [10].

3 Implementation in Matlab
For the implementation of the example models, a set
of tools and a component library have been constructed
that are based on Matlab and the Simulink editor. Using
a simple example, we will describe the basic workflow
necessary to implement own models and running simu-
lations.

Listing 1: Atomic model am_add2.

1 classdef am_add2 < handle
2 properties
3 s
4 in1
5 in2
6 name
7 tau
8 debug
9 end

10 methods
11 function obj = am_add2(name, tau,

debug)
12 obj.s = "running";
13 obj.in1 = 0;
14 obj.in2 = 0;
15 obj.name = name;
16 obj.debug = debug;
17 obj.tau = tau;
18 end
19 function delta(obj,e,x)
20 if isfield(x, "in1")
21 obj.in1 = x.in1;
22 end
23 if isfield(x, "in2")
24 obj.in2 = x.in2;
25 end
26 end
27 function y = lambda(obj,e,x)
28 s1 = obj.in1;
29 s2 = obj.in2;
30 if isfield(x, "in1")
31 s1 = x.in1;
32 end
33 if isfield(x, "in2")
34 s2 = x.in2;
35 end
36 y.out = s1 + s2;
37 end

38 function t = ta(obj)
39 t = [inf, 0];
40 end
41 end
42 end

The atomic models are the basic building blocks.
They are implemented in Matlab as classes that contain
a constructor and the methods delta, lambda and
ta. A simple example is the class am_add2 for the
addition of two input values (cf. Listing 1) and shows
how to implement a Mealy component. On first sight, it
looks similar to its counterpart in a continuous environ-
ment, but the discrete-event nature leads to a very typ-
ical change: Since input values are defined only, when
an input event arrives, these values have to be stored
internally using properties in1 and in2. The prop-
erty s is used throughout the whole library to denote
“macroscopic” states, which is useful in more complex
atomics. Here it is simply set to a constant value. The
remaining properties store the values of external param-
eters, in this case the name of the component, the input
delay and a debug flag.

The constructor provides initial values for all prop-
erties, its parameter list defines the set of external pa-
rameters of the component. The delta method just
stores incoming values. The lambda method com-
putes the output value, which is given here by the sum
of the incoming or stored values. Finally the tamethod
returns the lifetime of the state, which is always given as
a two-dimensional vector [a, b], denoting the time
t = a+bε. In this case it is always infinite.

Figure 2: Mask of the am_add2 atomic.

As a graphical representation of am_add2 a
Simulink subsystem with the name am_add2 is stored
in an NSA-DEVS library using the Simulink editor. In-
ternally it just consists of unconnected input and output
ports, which have the names of the ports that are used
inside the atomic model. Additionally, it has a mask that
defines the order and values of all parameters – except
name, which is set to the name of the actual component
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– and short description and help texts (cf. Fig. 2).
A coupled model, such as the simple example model

demo1 shown in Fig. 3, is defined by a Matlab function
that creates all its atomic and – using recursion – its cou-
pled components and all connections. To simplify this
tedious and error prone programming task, the user in-
stead builds the model from the Simulink representation
by copying the components from the library and con-
necting them in the standard way. The toworkspace
models are used here to collect the simulation results.
In the example, their parameter varname is set to
"input" and "result" respectively.

Figure 3: Coupled model demo1.

The very simple script shown in Listing 2 can now
be used to create and run the model and plot the simu-
lation results.

Listing 2: Run script for model demo1.

1 function testDemo()
2 tEnd = 6;
3
4 model_generator("demo1");
5 out = model_simulator("demo1", tEnd);
6 plot_results(out, tEnd);
7 end

From the Simulink representation, the
model_generator creates the Matlab scripts
for all coupled models. Next the model_simulator
runs the model and collects all results in the struct
variable out. In the example model it contains the two
fields out.input and out.results, which each
have subfields t and y for the time and result values.
They can now be plotted easily with Matlab’s standard
functions.

A typical result is shown in Fig. 4. The
am_generator creates increasing numbers, starting
at t = 1, which are shifted by the constant value 3. The
output event at t = 0 probably comes unexpected. It is

due to the am_const atomic that sends its value only
once at the beginning. It is then stored in am_add2
and added to the initial value 0 stored for the other input
port. One should bear in mind that the coupled models
look like Simulink models, but the inner workings of
discrete-event models are still very different.
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Figure 4: Plot of simulation results for the model demo1.

Discrete-event models can easily contain very hard
to find errors. To support the debugging process, the
toolset supports three different levels, from simple time
stamps over debug outputs from individually chosen
atomic components to a complete output of internal
simulator messages. The last level creates a graphical
representation of all messages with a huge amount of
information and is usually only useful for simple test
models.

4 Example Model
In order to show that the methods and tools presented
can be used directly for transaction-based modeling, we
will implement a standard textbook example [12]. The
model describes a time-shared computer with N termi-
nals, which submit jobs of varying computing time de-
mands. These jobs are processed on a single CPU in
time-slices of length q using a round-robin scheduler
with a switching time tswap. When a job completes, a
new job is created after a waiting time. The waiting and
processing times are exponentially distributed random
variables with mean values tW and tS. After the com-
pletion of NJ jobs, the average response time and queue
length and the CPU utilization are computed.

A common method to implement such a model uses
entities describing the jobs, which contain attributes
such as the service time, i. e. the remaining process-
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ing time, or the start time. Entity attributes are im-
plemented using struct variables. Four atomics have
been created to handle such entity attributes (cf. Fig.
5): am_adddata adds a set of fields denoting new
attributes to each incoming entity. If the input is not
already an entity (i. e. of type struct), an entity is cre-
ated with an additional attribute that stores the input
value. am_writedata changes the value of an entity
attribute using values from other attributes. The chang-
ing function is defined as string parameter describing
an arbitrary Matlab command. am_readdata out-
puts the value of an attribute from the input entity and
am_deletedata deletes a set of attributes.

Figure 5: Atomic models for entity handling.

A few existing atomics have been modified to op-
tionally read an attribute from an incoming entity in-
stead of using a parameter or an input, among them the
server and distribute components. With these
atomics, one can create a coupled model for a server
with exponentially distributed service times tS (cf. Fig.
6): The addTS component adds an attribute to store the
value of tS, setTS sets the value of this attribute using
the Matlab command string

"out = -" + tS + "*log(rand());"

where the variable tS is the mean service time, given by
a mask parameter. The am_server component uses
the attribute of incoming entities to set the current ser-
vice time. Finally, deleteTS deletes the attribute for
the sake of better encapsulation. Using a different for-
mula for the computation of tS, which uses several at-
tributes, one can implement complex strategies for cal-
culating the service time.

Figure 6: Coupled model of a server with entity-dependent
service times.

A standard component in a transaction-based envi-
ronment is the N-server, which can serve up to N in-
coming entities, each with its own service time. Its ex-
act behaviour can be quite complicated and often is not
transparent to the user of a commercial program. The
NSA-DEVS description eliminates all ambiguities that
arise e. g. with several incoming and outgoing entities at
the same time. The diagram in Fig. 7 describes the basic
behaviour of the am_nserver atomic, where monitor-
ing compliance with the maximum server capacity has
been omitted for better readability. Among its proper-
ties are a list E of entities in the server, a corresponding
list σ of remaining service times and a list qOut of out-
going entities. An interesting difference to the simple
server is the possibility that several entities can be ready
at the same time. To handle this, the N-server moves all
finished entities to qOut, changes to the state emitting
and outputs them with a time delay of tD. According to
the rules stated above, tD is predefined as 2ε , but may
need to be enlarged in special applications. All details
defining the exact behaviour can be found in the open
source code of am_nserver.m [11].

idle
ta→∞

working
ta→min(σ)

E/E+

emitting
ta→tD

E/E+

E/E+

(#qOut>1)/qOut-

(#qOut=1 & #E=0)
/qOut-

(#qOut=1 & #E>0)
/qOut-

/qOut+ := E-
∀E with σ=0

Figure 7: State diagram of the N-server component.

−→ state transition due to internal event
99K state transition due to external event
ta lifetime of the state
E external event (entity at input)
E+ insert entity in list E
E- remove entity from list E
#E number of entities in list E

With these atomics the three coupled mod-
els Terminals, CPU and the complete model
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timeShared can be assembled easily. The
Terminals model (cf. Fig. 8) starts with a genera-
tor initialJobs that creates N entities at time 0
(more precisely at times n · tD) with consecutive IDs.
They get the attributes startTime, outPort and
remainingServiceTime, which is set to the in-
dividual service times. An N-server implements the
individual waiting times. The startTime is set to
the current simulation time, using the utility function
get_time(), and the entities proceed to the CPU. When
a job is fully processed by the CPU, a corresponding ID
is sent as external event to the input of coupled model
Terminals, where it is promoted to a new job by the
atomic model constAdder.

Figure 8: Coupled model Terminals.

The CPU model (cf. Fig. 9) starts with a queue for
the waiting jobs, followed by a server representing the
CPU proper. Its service time is set to q+ tswap or less,
if the job is almost ready. After processing, the entity
attributes are updated: The time slice is subtracted from
the remainingServiceTime and outPort is set
to 1, if the job is ready, or 2 otherwise. The internal
feedback from the server to the queue signals to the
queue whether the server is available.

The complete model timeShared (cf. Fig. 10)
shows the loop around the CPU that jobs are sent,
until they have got their complete service time. The
distribute atomic uses the outPort attribute to
route finished jobs through the upper port. Finally the
response time is computed by subtracting the value of
attribute startTime from the current time and the en-
tity is terminated. The terminator counts the outgo-
ing jobs and sends this value back to the coupled model
Terminals, where new jobs are created. A stop
atomic halts the simulation, after NJ jobs have been pro-
cessed.

Adding a few output blocks, one can gather enough

Figure 9: Coupled model CPU.

Figure 10: Complete coupled model timeShared.

information to get a complete picture of the model be-
haviour. The information displayed in Fig. 11 is suffi-
cient to read off the waiting and service times of the jobs
and follow each job individually through the model.
This allows to thoroughly check the system behaviour.
Especially intuitive is the plot of the remaining time af-
ter the CPU, which nicely displays the loops of the jobs
around the CPU and the interaction of several jobs.

The component library contains the atomic
am_getmean that calculates the running mean value
of its input values, and the atomic am_utilization
for the computation of the CPU utilization. Adding
them to the timeShared model, one easily gets
all requested statistical data. A typical example with
N = 20 and NJ = 1000 is shown in Fig. 12. The results
are similar to those of the SimEvents version of this
model that had been used in [2], and consistent with
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Figure 11: Detailed results of timeShared.

the results shown in [12].

5 Conclusions
The implementation of the timeShared model has
once again shown that NSA-DEVS is a conveniant basis
for component-based modeling of discrete-event sys-
tems with a sound mathematical foundation. Especially,
not one of the delay parameters had to be changed from
its default value. This should be the typical case for sys-
tems with stochastical elements, where the probability
of concurrent events is quite small.

Furthermore, the toolset available freely from [11]
has proven its versatility: After finding and implement-
ing a suitable set of atomics for handling entities with
variable attributes and adding some standard atomics
to the library, the construction of a transaction-oriented
application proceeded by standard graphical methods.
We invite all modelers interested in discrete-event mod-
eling to try out these tools, ask for enhancements or
even provide useful new atomics to the library.

During the design of the free NSA-DEVS simula-
tor and the library, the focus has mainly been on cor-
rectness and simplicity. This shows, when measuring
its performance: The simulation of timeShared with
N = 40 and NJ = 1000 has a runtime of around 45 sec-
onds on a recent PC platform, while the corresponding
SimEvents version needs less than 2 s. Of course, the
comparison is not quite fair, since SimEvents compiles
the Matlab code before a run. Nevertheless, there is def-
initely large potential for improvement by trading ele-
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Figure 12: Statistical results of timeShared.

gance of construction for runtime performance and by
generally reducing the number of messages sent.

With the presented tools and methods, one can fi-
nally tackle the questions that have been raised in [2]:

What are the shortcomings of current imple-
mentations? Which concepts or components
are missing? How could a reasonable set of
components be defined?

The atomic models for entity handling and the N-server
introduced above are practical examples, how to pre-
cisely define fundamental building blocks due to their
underlying NSA-DEVS based formulation. Another
step along these lines would be the introduction of ver-
satile queue models that are capable of supporting all
the applications denoted in the ARGESIM benchmark
C22 [13]. To cite [2] once again:

For the advancement of transaction-based
modeling it is vital that it is based on a thor-
ough theoretical analysis to reveal the fun-
damental abstractions and basic components
that are necessary.

This is true more generally for all discrete-event based
modeling. NSA-DEVS and corresponding tools seem
to be a promising path to promote such a program.
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